85 resultados para Vascular physiology

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nitric oxide is an important molecule in the regulation of the cardiovascular system and blood pressure. This research provided new insights into the evolution of nitric oxide control of blood vessels by showing how nitric oxide signalling causes vasodilation in the circulation of amphibians and fishes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives
Form a working group of renal vascular access nurses to develop peer reviewed, accessible, evidence based e-leaning modules related to vascular access principles and practice.

Key messages
Vascular access training and guidelines are often unit specific but the core principles of vascular access care are generally transferable. The vascular access e-learning module aims to utilize resources to minimize wasted time developing and keeping multiple individual vascular access training packages up to date.
Vascular access education is delivered from a variety of resources such as educators, senior staff and vascular access nurses. This e-learning module allows renal units the opportunity to provide a national learning package with general consensus on terminology and up to date evidence based practice.
Recently there has been a rise in the use of ultrasound to assess and perform image guided cannulation in vascular access to improve patient outcomes. There is only a small window of opportunity to provide education in ultrasound use. This module will provide education on this and other aspects of vascular access practices and patient care.

Implications for clinical practice
Implications include access to standardized learning packages based on current evidence based practice, eencouraging the utilization of new technology (e.g. Ultrasound observation and interpretation of results), reinforcing the underpinning knowledge of anatomy and physiology of vascular access, standardizing practice benefits to patients and nurses moving between dialysis units, improving accessibility by transitioning learning to smart phones and tablets and providing an opportunity for international collaboration related to vascular access e-learning concepts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bed rest results in marked vascular adaptations, and resistive vibration exercise (RVE) has been shown to be an effective countermeasure. As vibration exercise has practical and logistical limitations, the use of resistive exercise (RES) alone has the preference under specific circumstances. However, it is unknown if RES is sufficient to prevent vascular adaptations to bed rest. Therefore, the purpose of the present study was to examine the impact of RES and RVE on the vascular function and structure of the superficial femoral artery in young men exposed to 60 days of bed rest. Eighteen healthy men (age: 31 +/- 8 yr) were assigned to bed rest and randomly allocated to control, RES, or RVE groups. Exercise was applied 3 times/wk for 5-7 min/session. Resting diameter, blood flow, flow-mediated dilation (FMD), and dilator capacity of the superficial femoral artery were measured using echo-Doppler ultrasound. Bed rest decreased superficial femoral artery diameter and dilator capacity (P < 0.001), which were significantly attenuated in the RVE group (P < 0.01 and P < 0.05, respectively) but not in the RES group (P = 0.202 and P = 0.696, respectively). Bed rest significantly increased FMD (P < 0.001), an effect that was abolished by RVE (P < 0.005) but not RES (P = 0.078). Resting and hyperemic blood flow did not change in any of the groups. Thus, RVE abolished the marked increase in FMD and decrease in baseline diameter and dilator capacity normally associated with prolonged bed rest. However, the stimulus provided by RES alone was insufficient to counteract the vascular adaptations to bed rest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitric oxide (NO) signalling pathways were examined in the lateral aortae and dorsal aorta of the cane toad Bufo marinus. NADPH diaphorase histochemistry and nitric oxide synthase (NOS) immunohistochemistry found no evidence for endothelial NOS in the endothelium of toad aortae, but it could be readily demonstrated in rat aorta that was used as a control. Immunohistochemistry using a specific neural NOS antibody showed the presence of neural NOS immunoreactivity in the perivascular nerves of the aortae. The anatomical data was supported by in vitro organ bath physiology, which demonstrated that the vasodilation mediated by applied acetylcholine (10-5 mol l-1) was not dependent on the presence of the vascular endothelium; however, it was significantly reduced in the presence of a neural NOS inhibitor, vinyl-L-NIO (10-4 mol l-1). In addition, atropine (10-6 mol l-1) (a muscarinic receptor inhibitor), L-NNA (10-4 mol l-1) (a NOS inhibitor) and ODQ (10-5 mol l-1) (an inhibitor of soluble guanylyl cyclase) abolished the vasodilatory effect of applied acetylcholine. In conclusion, we propose that an endothelial NO system is absent in toad aortae and that NO generated by neural NOS in perivascular nerves mediates vasodilation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the mechanisms by which nitric oxide (NO) regulates the dorsal aorta and the intestinal vein of the Australian short-finned eel Anguilla australis. NADPH diaphorase histochemistry and immunohistochemistry using a mammalian endothelial nitric oxide synthase (NOS) antibody could not demonstrate NOS in the endothelium of either blood vessel; however, NOS could be readily demonstrated in the endothelium of the rat aorta that was used as a control. Both blood vessels contained NADPH diaphorase positive nerve fibres and nerve bundles, and immunohistochemistry using a neural NOS antibody showed a similar distribution of neural NOS immunoreactivity in the perivascular nerves. In vitro organ bath physiology showed that a NO/soluble guanylyl cyclase (GC) system is present in the dorsal aorta and the intestinal vein, since the soluble GC inhibitor oxadiazole quinoxalin-1 (ODQ; 10–5 mol l–1) completely abolished the vasodilatory effect of the NO donor, sodium nitroprusside (SNP; 10–4 mol l–1). In addition, nicotine (3x10–4 mol l–1) mediated a vasodilation that was not affected by removal of the endothelium. The nicotine-mediated dilation was blocked by the NOS inhibitor, Nω-nitro-arginine (L-NNA; 10–4 mol l–1), and ODQ (10–5 mol l–1). More specifically, the neural NOS inhibitor, Nω-propyl-L-arginine (10–5 mol l–1), significantly decreased the dilation induced by nicotine (3x10–4 mol l–1). Furthermore, indomethacin (10–5 mol l–1) did not affect the nicotine-mediated dilation, suggesting that prostaglandins are not involved in the response. Finally, the calcium ionophore A23187 (3x10–6 mol l–1) caused an endothelium-dependent dilation that was abolished in the presence of indomethacin. We propose the absence of an endothelial NO system in eel vasculature and suggest that neurally derived NO contributes to the maintenance of vascular tone in this species. In addition, we suggest that prostaglandins may act as endothelially derived relaxing factors in A. australis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The natriuretic peptide system is a complex family of peptides and receptors that is primarily linked to the maintenance of osmotic and cardiovascular homeostasis. A natriuretic peptide system is present in each vertebrate class but there are varying degrees of complexity in the system. In agnathans and chondrichthyians, only one natriuretic peptide has been identified, while new data has revealed that multiple types of natriuretic peptides are present in bony fish. However, it seems in tetrapods that there has been a reduction in the number of natriuretic peptide genes, such that only three natriuretic peptides are present in mammals. The peptides act via a family of guanylyl cyclase receptors to generate the second messenger cGMP, which  mediates a range of physiological effects at key targets such as the gills, kidney and the cardiovascular system. This review summarises the current knowledge of the natriuretic peptide system in non-mammalian vertebrates and discusses the physiological actions of the peptides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper explains the designed performances of the new CH2 building in Melbourne, Australia. CH2 is an environmentally significant project that involves biomimicry of natural systems to produce indoor conditions that are conducive to user comfort, health and productivity. This paper focuses on lighting and  physiology and examines the solutions chosen for artificial and natural lighting and the likely effects these will have on building occupants. The purpose of the paper is to critically comment on the adopted strategy and, cognisance of  contemporary thinking in lighting design, to judge the effectiveness of this aspect of the project with a view to later verification and post-occupancy review. The  paper concludes that CH2 is an exemplar of lighting innovation that provides valuable lessons to designers of office buildings, particularly in the Melbourne CBD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Menkes protein (ATP7A) is defective in the Cu deficiency disorder Menkes disease and is an important contributor to the maintenance of physiological Cu homeostasis. To investigate more fully the role of ATP7A, transgenic mice expressing the human Menkes gene ATP7A from chicken beta-actin composite promoter (CAG) were produced. The transgenic mice expressed ATP7A in lung, heart, liver, kidney, small intestine, and brain but displayed no overt phenotype resulting from expression of the human protein. Immunohistochemical analysis revealed that ATP7A was found primarily in the cardiac muscle, smooth muscle of the lung, distal tubules of the kidney, intestinal enterocytes, and patches of hepatocytes, as well as in the hippocampus, cerebellum, and choroid plexus of the brain. In 60-day- and 300-day-old mice, Cu concentrations were reduced in most tissues, consistent with ATP7A playing a role in Cu efflux. The reduction in Cu was most pronounced in the hearts of older T22#2 females (24%), T22#2 males (18%), and T25#5 females (23%), as well as in the brains of 60-day-old T22#2 females and males (23% and 30%, respectively).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A previous study investigating individuals' bitterness sensitivities found a close association among three compounds: L-tryptophan (L-trp), L-phenylalanine (L-phe) and urea (Delwiche et al., 2001, Percept. Psychophys. 63, 761-776). In the present experiment, psychophysical cross-adaptation and bitterness inhibition experiments were performed on these three compounds to determine whether the bitterness could be differentially affected by either technique. If the two experimental approaches failed to differentiate L-trp, L-phe and urea's bitterness, then we may infer they share peripheral physiological mechanisms involved in bitter taste. All compounds were intensity matched in each of 13 subjects, so the judgments of adaptation or bitterness inhibition would be based on equal initial magnitudes and, therefore, directly comparable. In the first experiment, cross-adaptation of bitterness between the amino acids was high (>80%) and reciprocal. Urea and quinine-HCl (control) did not cross-adapt with the amino acids symmetrically. In a second experiment, the sodium salts, NaCl and Na gluconate, did not differentially inhibit the bitterness of L-trp, L-phe and urea, but the control compound, MgSO4, was differentially affected. The bitter inhibition experiment supports the hypothesis that L-trp, L-phe and urea share peripheral bitter taste mechanisms, while the adaptation experiment revealed subtle differences between urea and the amino acids indicating that urea and the amino acids activate only partially overlapping bitter taste mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The promise of cancer immunotherapy is that it will not only eradicate primary tumors but will generate systemic antitumor immunity capable of destroying distant metastases. A major problem that must first be surmounted relates to the immune resistance of large tumors. Here we reveal that immune resistance can be overcome by combining immunotherapy with a concerted attack on the tumor vasculature. The functionally related antitumor drugs 5,6-dimethylxanthenone-4-acetic acid (DMXAA) and flavone acetic acid (FAA), which cause tumor vasculature collapse and tumor necrosis, were used to attack the tumor vasculature, whereas the T-cell costimulator B7.1 (CD80), which costimulates T-cell proliferation via the CD28 pathway, was used to stimulate antitumor immunity. The injection of cDNA (60–180 µg) encoding B7.1 into large EL-4 tumors (0.8 cm in diameter) established in C57BL/6 mice, followed 24 h later by i.p. administration of either DMXAA (25 mg/kg) or FAA (300 mg/kg), resulted in complete tumor eradication within 2–6 weeks. In contrast, monotherapies were ineffective. Both vascular attack and B7.1 immunotherapy led to up-regulation of heat shock protein 70 on stressed and dying tumor cells, potentially augmenting immunotherapy. Remarkably, large tumors took on the appearance of a wound that rapidly ameliorated, leaving perfectly healed skin. Combined therapy was mediated by CD8+ T cells and natural killer cells, accompanied by heightened and prolonged antitumor cytolytic activity (P < 0.001), and by a marked increase in tumor cell apoptosis. Cured animals completely rejected a challenge of 1 x 107 parental EL-4 tumor cells but not a challenge of 1 x 104 Lewis lung carcinoma cells, demonstrating that antitumor immunity was tumor specific. Adoptive transfer of 2 x 108 splenocytes from treated mice into recipients bearing established (0.8 cm in diameter) tumors resulted in rapid and complete tumor rejection within 3 weeks. Although DMXAA and B7.1 monotherapies are complicated by a narrow range of effective doses, combined therapy was less dosage dependent. Thus, a broad range of amounts of B7.1 cDNA were effective in combination with 25 mg/kg DMXAA. In contrast, DMXAA, which has a very narrow range of high active doses, was effective at a low dose (18 mg/kg) when administered with a large amount (180 µg) of B7.1 cDNA. Importantly, combinational therapy generated heightened antitumor immunity, such that gene transfer of B7.1 into one tumor, followed by systemic DMXAA treatment, led to the complete rejection of multiple untreated tumor nodules established in the opposing flank. These findings have important implications for the future direction and utility of cancer immunotherapies aimed at harnessing patients’ immune responses to their own tumors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

n reptiles, accumulating evidence suggests that nitric oxide (NO) induces a potent relaxation in the systemic vasculature. However, very few studies have examined the source from which NO is derived. Therefore, the present study used both anatomical and physiological approaches to establish whether NO-mediated vasodilation is via an endothelial or neural NO pathway in the large arteries of the estuarine crocodile Crocodylus porosus. Specific endothelial nitric oxide synthase (NOS) staining was observed in aortic endothelial cells following nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) histochemistry and endothelial NOS immunohistochemistry (IHC), suggesting that an endothelial NO pathway is involved in vascular control. This finding was supported by in vitro organ bath physiology, which demonstrated that the relaxation induced by acetylcholine (10-5 mol l-1) was abolished in the presence of the NOS inhibitor, N-omega-nitro-L-arginine (L-NNA; 10-4 mol l-1), the soluble guanylyl cyclase inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 10-5 mol l-1), or when the endothelium was removed. Interestingly, evidence for a neural NO pathway was also identified in large arteries of the crocodile. Neural NOS was located in perivascular nerves of the major blood vessels following NADPH-d histochemistry and neural NOS IHC and in isolated aortic rings, L-NNA and ODQ, but not the removal of the endothelium, abolished the relaxation effect of the neural NOS agonist, nicotine (3x10-4 mol l-1). Thus, we conclude that the large arteries of C. porosus are potentially regulated by NO-derived from both endothelial and neural NOS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diving animals offer a unique opportunity to study the importance of physiological constraint and the limitation it can impose on animal's behaviour in nature. This paper examines the interaction between physiology and behaviour and its impact on the diving capability of five eared seal species (Family Otariidae; three sea lions and two fur seals). An important physiological component of diving marine mammals is the aerobic dive limit (ADL). The ADL of these five seal species was estimated from measurements of their total body oxygen stores, coupled with estimates of their metabolic rate while diving. The tendency of each species to exceed its calculated ADL was compared relative to its diving behaviour. Overall, our analyses reveal that seals which forage benthically (i.e. on the sea floor) have a greater tendency to approach or exceed their ADL compared to seals that forage epipelagically (i.e. near the sea surface). Furthermore, the marked differences in foraging behaviour and physiology appear to be coupled with a species demography. For example, benthic foraging species have smaller populations and lower growth rates compared to seal species that forage epipelagically. These patterns are relevant to the conservation and management of diving vertebrates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Small diameter vascular grafts were fabricated from pure Polyurethane (PU) as well as PU reinforced with a tubular weft-knitted fabric. The tensile properties of the reinforced composite vascular grafts were compared with that of the tubular fabric itself and the pure PU vascular grafts. The elasticity and strength of the reinforced vascular grafts were improved compared with the tubular fabric. Strength of the reinforced vascular grafts was 5–10 times of the strength of the pure PU vascular grafts. Expanding the tubular fabric to increase the inner diameter of the reinforced vascular graft reduced the graft’s strength and initial modulus, but the difference was reduced as the PU content was increased. For grafts of the same inner diameter, increasing the PU content increased the thickness and strength of the graft wall, which led to a general increase in the strength and initial modulus of the composite vascular grafts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the role of nitric oxide (NO) in regulation of the pulmocutaneous vasculature of the toad, Bufo marinus was investigated. In vitro myography demonstrated the presence of a neural NO signaling mechanism in both arteries. Vasodilation induced by nicotine was inhibited by the soluble guanylyl cyclase (GC) inhibitor, 1H-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one, and the NO synthase (NOS) inhibitor, Nω-nitro-L-arginine (L-NNA). Removal of the endothelium had no significant effect on the vasodilation. Furthermore, pretreatment with N5-(1-imino-3-butenyl)-L-ornithine (vinyl-L-NIO), a more specific inhibitor of neural NOS, caused a significant decrease in the nicotine-induced dilation. In the pulmonary artery only, a combination of L-NNA and the calcitonin gene-related peptide (CGRP) receptor antagonist, CGRP(8-37), completely blocked the nicotine-induced dilation. In both arteries, the vasodilation was also significantly decreased by glibenclamide, an ATP-sensitive K+ (K+ATP) channel inhibitor. Levcromakalim, a K+ATP channel opener, caused a dilation that was blocked by glibenclamide in both arteries. In the pulmonary artery, NO donor-mediated dilation was significantly decreased by pretreatment with glibenclamide. The physiological data were supported by NADPH-diaphorase histochemistry and immunohistochemistry, which demonstrated NOS in perivascular nerve fibers but not the endothelium of the arteries. These results indicate that the pulmonary and cutaneous arteries of B. marinus are regulated by NO from nitrergic nerves rather than NO released from the endothelium. The nitrergic vasodilation in the arteries appears to be caused, in part, via activation of K+ATP channels. Thus, NO could play an important role in determining pulmocutaneous blood flow and the magnitude of cardiac shunting.